Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Rachel L. Fanshawe, Charles R. Clarkt and Allan G. Blackman*

Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand

+ Additional correspondence author: clarkc@alkali.otago.ac.nz

Correspondence e-mail: blackman@alkali.otago.ac.nz

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.004 Å R factor = 0.023 wR factor = 0.051 Data-to-parameter ratio = 19.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. [*N*-(2-Aminoethyl)-*N*,*N*-bis(3-aminopropyl)amine]dichlorocobalt(III) chloride, [Co(abap)Cl₂]Cl

Structural analysis of the title compound, $[Co(abap)Cl_2]Cl$, where abap is *N*-(2-aminoethyl)-*N*,*N*-bis(3-aminopropyl)amine (C₈H₂₂N₄), confirms that the asymmetric amine ligand is oriented such that the N atoms of the five-membered chelate ring are in the same plane as the chloride ligands. Received 22 November 2000 Accepted 4 December 2000 Online 14 December 2000

Comment

The asymmetric tetraamine ligand abap [abap is *N*-(2aminoethyl)-*N*,*N*-bis(3-aminopropyl)amine] can coordinate to four mututally *cis* sites of a six-coordinate metal complex in two ways. Coordination such that the N atoms of a sixmembered chelate ring lie in the same plane as the remaining ligand(s) gives the '6' isomer, as found in the structurally characterized complex [Co(abap)O₂NO](ClO₄)₂ (Fanshawe & Blackman, 1995), while the '5' isomer results on coordination of the ligand so that the five-membered chelate ring lies in the same plane as the ancillary ligand(s). The structure of [Co(abap)Cl₂]Cl, (I), described herein confirms assignment of this complex as the '5' isomer.

The structure consists of a Co^{III} ion coordinated to four N atoms of the abap ligand, with coordination completed by two chloride ligands. A single chloride counter-ion balances the charge. Co-N bond lengths are typical of Co^{III} complexes, with the bond to the tertiary N atom of the abap ligand being the longest [2.030 (2) Å]. Similarly lengthened Co-N (tertiary) bonds have been observed in $[Co(abap)(NO_2)_2]X$ $(X = Cl^{-}, ClO_4^{-} \cdot H_2O, PF_6^{-} \cdot H_2O, I^{-} \cdot H_2O)$, all of which crystallize as the '5' isomer (Bernal et al., 1996). The six-membered chelate rings adopt chair conformations, while the conformation of the five-membered ring is λ . The bond angles involving the primary N atoms of the six-membered chelate rings (C5-N12-Co1 and C8-N13-Co1) are 122.10 (16) and $121.92 (15)^\circ$, respectively. The expansion of these angles, when compared to the corresponding angle in the five-membered chelate ring [C1-N11-Co1 109.89 (15)°] presumably reflects the inherently greater strain present in a six-membered ring having one angle significantly larger than 90° .

Acta Cryst. (2001). E57, m17-m18

© 2001 International Union of Crystallography

Printed in Great Britain - all rights reserved

metal-organic papers

Figure 1

The cation of (I) with displacement ellipsoids at the 50% probability level.

Experimental

 $[Co(abap)(O_2NO)](ClO_4)_2$ (1.0 g) was dissolved in water and loaded onto a Dowex 50 W × 2 cation-exchange column. The column was washed with water and 1 *M* HCl before the complex was eluted with 2 *M* HCl. The purple eluate was collected and taken to dryness by rotary evaporation to give a blue solid which was crystallized from dilute HCl. X-ray quality crystals were obtained on slow evaporation of a concentrated solution of the product in 5 *M* HCl.

Crystal data

$[CoCl_2(C_8H_{22}N_4)]Cl$	Mo $K\alpha$ radiation
$M_r = 339.58$	Cell parameters from 16
Orthorhombic, $P2_12_12_1$	reflections
a = 8.405 (2) Å	$\theta = 5-12.5^{\circ}$
b = 10.2633 (14) Å	$\mu = 1.81 \text{ mm}^{-1}$
c = 15.9652 (15) Å	T = 173 (2) K
V = 1377.2 (5) Å ³	Block, blue
Z = 4	$0.42 \times 0.20 \times 0.18 \text{ mm}$
$D_x = 1.638 \text{ Mg m}^{-3}$	
Data collection	
Siemens P4 diffractometer	$R_{\rm int} = 0.017$
ω scans	$\theta_{\rm max} = 27^{\circ}$
Absorption correction: ψ scan	$h = -10 \rightarrow 8$
(SHELXTL-Plus; Sheldrick,	$k = 0 \rightarrow 13$
1990)	$l = 0 \rightarrow 20$
$T_{\min} = 0.662, T_{\max} = 0.772$	3 standard reflections
3058 measured reflections	every 997 reflections
2850 independent reflections	intensity decay: <2%
2717 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.023$
$wR(F^2) = 0.051$
S = 1.05
2850 reflections
145 parameters
H-atom parameters constrained
-

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0258P)^2 \\ &+ 0.2974P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.001 \\ \Delta\rho_{\text{max}} &= 0.25 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.18 \text{ e } \text{\AA}^{-3} \\ \text{Absolute structure: Flack (1983);} \\ 1110 \text{ Friedel pairs} \\ \text{Flack parameter} &= 0.004 (13) \end{split}$$

Table 1		
Selected geometric parameters	(Å,	°).

Co1-N11	1.9528 (19)	N14-C2	1.508 (3)
Co1-N13	1.9728 (19)	N14-C3	1.516 (3)
Co1-N12	1.982 (2)	N14-C6	1.518 (3)
Co1-N14	2.030 (2)	C1-C2	1.501 (3)
Co1-Cl2	2.2510 (6)	C3-C4	1.520 (3)
Co1-Cl1	2.2835 (8)	C4-C5	1.505 (4)
N11-C1	1.481 (3)	C6-C7	1.510 (3)
N12-C5	1.487 (3)	C7-C8	1.510 (3)
N13-C8	1.482 (3)		
N11-Co1-N13	88.88 (8)	N14-Co1-Cl2	93.33 (6)
N11-Co1-N12	92.78 (8)	N11-Co1-Cl1	87.85 (6)
N13-Co1-N12	169.68 (9)	N13-Co1-Cl1	85.17 (6)
N11-Co1-N14	86.23 (8)	N12-Co1-Cl1	84.71 (6)
N13-Co1-N14	96.15 (8)	N14-Co1-Cl1	173.90 (6)
N12-Co1-N14	94.13 (8)	Cl2-Co1-Cl1	92.64 (3)
N11-Co1-Cl2	178.09 (6)	C1-N11-Co1	109.89 (15)
N13-Co1-Cl2	89.32 (6)	C5-N12-Co1	122.10 (16)
N12-Co1-Cl2	89.11 (6)	C8-N13-Co1	121.92 (15)

Data collection: *XSCANS* (Siemens, 1991); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *WinGX* (Farrugia, 1999); software used to prepare material for publication: *WinGX*.

We thank Professor W. T. Robinson (University of Canterbury) for the data collection. This work is supported by a University of Otago Division of Sciences Research Grant.

References

- Bernal, I. & Xubin, X. & Somoza, F. (1996). Fundamental Principles of Molecular Modeling, edited by W. Gans, A. Amann & J. C. A. Boeyens, pp. 223–244. New York: Plenum.
- Fanshawe, R. L. & Blackman, A. G. (1995). Inorg. Chem. 34, 421-423.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.